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The philosophy of the arbitrary Lagrangian–Eulerian (ALE) methodology for solv-
ing multidimensional fluid flow problems is to move the computational grid, using
the flow as a guide, to improve the accuracy and efficiency of the simulation. A
principal element of ALE is the rezone phase in which a “rezoned” grid is created
that is adapted to the fluid motion. We will describe a general rezone strategy that
ensures the continuing geometric quality of the computational grid, while keeping
the “rezoned” grid as close as possible to the Lagrangian grid at each time step.
Although the methodology can be applied to more general grid types, here we re-
strict ourselves to logically rectangular grids in two dimensions. Our rezoning phase
consists of two components: a sequence of local optimizations followed by a single
global optimization. The local optimization defines a set of “reference” Jacobians
which incorporates our definition of mesh quality at each point of the grid. The set
of reference Jacobians then is used in the global optimization. At each node we form
a local patch from the adjacent cells of the Lagrangian grid and construct a local
realization of the Winslow smoothness functional on this patch. Minimization of
this functional with respect to the position of the central node defines its “virtual”
location (the node is not actually moved at this stage). By connecting this virtually
moved node to its (stationary) neighbors, we define a reference Jacobian that repre-
sents the best locally achievable geometric grid quality. The “rezoned” grid results
from a minimization (where the points are actually moved) of a global objective
function that measures the distance (in a least-squares sense) between the Jacobian
of the rezoned grid and the reference Jacobian. This objective function includes a
“barrier” that penalizes grids whose cells are close to being inverted. The global ob-
jective function is minimized by direct optimization leading to the rezoned grid. We
provide numerical examples to demonstrate the robustness and effectiveness of our
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methodology on model examples as well as for ALE calculations of Rayleigh–Taylor
unstable flow. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

In numerical simulations of multidimensional fluid flow, the relationship of the motion of
the computational grid to the motion of the fluid is an important issue. One of two choices
is typically made: a Lagrangian framework or an Eulerian framework. In the Lagrangian
framework, the grid moves with the local fluid velocity, while in the Eulerian framework,
the fluid flows through a grid fixed in space.

More generally, the motion of the grid can be chosen arbitrarily. The philosophy of the
arbitrary Lagrangian–Eulerian methodology (ALE; cf. [3, 4, 22–24, 35, 39]) is to exploit
this degree of freedom to improve the accuracy and efficiency of the simulation. The main
elements in an ALE simulation are an explicit Lagrangian phase, a rezone phase in which
a new grid is defined, and a remapping in which the Lagrange solution is transferred to the
new grid [35]. Of these three processes, it is the rezone phase that is least developed. The
purpose of this paper is to develop a general rezone strategy that ensures the continuing
geometric quality of the computational grid while keeping the rezoned grid as close as
possible to the Lagrangian grid at each time step.

Maintaining geometric quality is one general goal of rezoning. The other general goal is
adaptation, in which the grid is moved in order to better resolve regions of rapid variation of
the flow variables, or more generically to reduce some measure of the solution error. Each of
these two goals can be attained by the minimization of an appropriately constructed global
functional. However, a difficulty arises when one tries to combine these—how should
one weight the relative importance of these separate goals? In particular, the two global
functionals will have distinct (physical) dimensions, and so they can only be combined by
making use of a dimensional constant. At present, there is no theoretical basis for choosing
this constant, thus the choice is relegated to the user. Although effective choices can be found
for particular problems, the key to a successful ALE code is a robust rezoning algorithm
that does not require user intervention.

On the other hand, if one restricts oneself to optimizing only the overall geometric quality
of the grid, then another problem arises—optimizing the grid while ignoring the details of
the flow usually reduces the overall accuracy of the simulation. Moreover, the results of
such an optimization strongly depend on the chosen measure of mesh quality, and in many
cases the optimization problem may not have a unique solution. The resolution of this
apparent dilemma is that one must define the measure of geometric quality in the context
of the solution. In this paper, we focus on defining a suitable measure of geometric quality,
and we postpone consideration of the issues related to a combined measure that includes
explicit adaptation. We restrict our attention to logically rectangular grids in two dimensions.
However, the ideas underlying our rezone strategies are extendable to three dimensions and
to unstructured grids.

The essential new idea in this paper is the recognition that the Lagrangian solution
before rezoning contains sufficient information about the flow to constrain our measure
of the smoothness of the mesh. More specifically, the Lagrangian mesh reflects both the
physical motion of the fluid and unphysical distortion. We assume that the unphysical
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distortion of a computational grid has a much shorter wavelength and so can be separated
from the physical motion by averaging over a small neighborhood of the cell. This assump-
tion permits the rezoned grid to remain close to the Lagrangian grid but be “smoother”
(i.e., have better geometrical quality). By requiring the rezoned grid to remain as close
as possible to the Lagrangian grid, we minimize the error of the remap phase, and we
justify employing a local remapper [4, 5] in which mass, energy, and momentum are sim-
ply exchanged between neighboring cells. Local remappers are computationally much more
efficient than global remappers [16], which make no assumptions about the relationship of
the old and new grids.

One can consider a logically rectangular grid in physical space as resulting from a map
of the uniform grid in a unit square of logical space. The most fundamental object de-
scribing the map is its Jacobian matrix. Therefore, one can expect that if two maps have
similar Jacobian matrices, then the maps themselves must be similar and so will produce
grids close to each other. This leads to the following strategy. We first construct Jacobian
matrices—termed the reference Jacobian matrices (RJMs)—that are based on the geometry
of the nearest neighbors of a Lagrangian cell, effectively smoothing the shorter wavelength
grid deformation. It is not possible to use the RJMs defined at each vertex by themselves
to derive the new (i.e., rezoned) positions of the vertices. To begin with, each RJM related
to the cell specifies the vectors that form the edges of a cell, and there is no guarantee
that these vectors will form a closed figure. Furthermore, the cells do not exist in iso-
lation from each other. Each vertex (not on a boundary) belongs to four cells; a simple
rezone strategy applied individually to each cell will lead, in general, to four incompat-
ible specifications of the rezoned position of any vertex. The resolution is to construct a
global functional that measures the difference between the RJM (which depends on the
Lagrangian grid and the smoothing process) and the rezoned Jacobian (not known be-
fore the minimization process) for all cells in the grid. Minimizing this functional over
the entire grid (as a function of each of the vertex coordinates) then leads to the rezoned
grid.

This strategy still does not guarantee that the rezoned mesh is unfolded. However in
our framework, this property now can be easily enforced through a simple modification
of our global functional to include a barrier function as described in [13, 44]. The barrier
function effectively penalizes any solution where the area of the cell is much smaller than
the area derived from the RJM. We note that this minimization problem belongs to the class
of so-called nonlinear least squares [37] for which effective minimization procedures have
been developed.

The outline of our paper is as follows. In the next section, we review some standard
approaches to rezoning, give background, and outline the main ideas of our research. In
Section 3 we describe the construction of the grid for a given set of reference Jacobian
matrices, specified for each grid point. The construction involves the formation and mini-
mization of a global function that measures the difference between the specified “desired”
RJMs and the Jacobian matrices of the new rezoned grid. We provide numerical exam-
ples to suggest that the constrained optimization problem has a unique solution. We also
demonstrate how our approach works when the RJM is computed from a nonsmooth but
continuous map, and in the more difficult case of incompatible RJMs, obtained from
several different mappings. In Section 4 we describe our local optimization procedure,
which is based on a local realization of the Winslow smoothing functional, leading to
a definition of the RJMs at each node of the grid. We describe the properties of such a
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procedure and give computational examples. In Section 5 we present “stationary” numer-
ical examples not in the context of an ALE simulation, but which illustrate the results of
our rezone strategy. In Section 6 we present preliminary results using our rezone strategy in
ALE calculations of Rayleigh–Taylor instability problems and compare these with a purely
Lagrangian calculation and also with a particular implementation of the rezone strategy
based on the global Winslow smoother. In Section 7 we summarize our results and describe
future work.

2. BACKGROUND AND RATIONALE

2.1. Brief Review of Rezoning Methods

Rezoning methods can be divided into two broad classes—velocity-based and coordinate
(grid)-based. In the coordinate-based class, there are two further subclasses differentiated
by whether the rezoning strategy is local or global. In this section we give a brief description
of each of these.

There are many strategies in the velocity-based approach. One of the more popular is
based on solving the vector Poisson equation (see, for example, [17, 33, 42]), using the
fact that this equation with smooth coefficients and a smooth right-hand side has a smooth
solution (here smooth is used in its mathematical sense of having continuous derivatives
of many orders). This approach is most useful for problems such as the interaction of a
fluid with a structure, where the dynamics of the flow are due primarily to the moving
structure. For example, in [42] the authors solve an equation for grid velocity �ug = 0
with the normal components of velocity prescribed on the boundary. A velocity-based
approach also has been used in shock calculations [17]; here the authors introduce a near
Lagrangian velocity, which is the solution of the following equation: �ug = grad div uL ,
where uL is the Lagrangian velocity. Since � = grad div − curl curl, the right-hand side
of this equation is equal to �uL , but with the curl term removed. Here one hopes that the
grid velocity obtained from this equation will have a divergence close to the divergence
of the Lagrangian velocity, while its curl is close to zero. The underlying idea is that
the Lagrangian grid becomes tangled as a result of the vorticity in the flow. Unfortunately,
this approach in general does not guarantee that the rezoned grid is unfolded. Also, whenever
the flow is close to incompressible, the velocity divergence will be nearly zero independent
of how large the deformations of the fluid might be, and the “near Lagrangian velocity”
approach has the trivial solution ug = 0.

Let us now briefly review coordinate-based approaches. In the local coordinate-based
approach ([3, 19, 39]), one decides which nodes will be moved from their Lagrangian po-
sitions by using local criteria. In [3, p. 311; 39], for example, the authors calculate two
numbers at each node—the ratio of the minimum and maximum areas among the cells that
share that node and also the maximum value of the cosines of the angles for which that
node is the central vertex. Based on these two numbers, the criteria then determine whether
a node should be moved. The new locations of the nodes that are to be moved are found
using a local smoothing technique. For example, in [39] the authors use a method known
as the Tipton smoother, which is based on a finite element approximation to Brackbill’s
“smoothness” functional [6]. There are several problems with this approach. First, the cri-
teria for choosing which nodes should be moved are based on ad hoc grid quality measures;
the parameters of the movement criteria need to be tuned at least to the class of problem, or
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more specifically tailored for the specific problem at hand. Second, the node movement
strategy does not guarantee that the final grid is unfolded [12].

Brackbill and Saltzman [6] developed a global coordinate approach based on modifying
the Winslow algorithm [45]. In [6], extra terms are added to the smoothness functional to
adapt to regions of steep gradients. One difficulty that arises is that there is no theory to guide
the relative weights (which have different physical dimensions) of these terms, which are left
to the user to specify. In addition, because the functional does not include any information
about the Lagrangian grid, the solution grid can be very far from the Lagrangian grid, which
precludes the use of a local remapper. Indeed, in general one does not know if a solution
to the equations exists (unless it is a pure smoothness functional), and so an alternative
strategy has been to generate an approximate solution. This approximation results from
undertaking only a few iterations towards the solution, starting from the Lagrangian grid. In
this approach, there is no theory for what kind of iterations to use nor how many iterations
to allow, nor is there any guarantee that the resulting grid will be unfolded. More details on
this rezone strategy and a comparison of results of an ALE calculation of Rayleigh–Taylor
instability using a modified Winslow strategy to those of our new RJM strategy is presented
in Section 6.

Finally, we note that rezoning strategies based only on formal minimization of the error,
such as the moving finite element method [2, 15], produce degenerate or nearly degenerate
grids and require special regularizing terms (i.e., penalty functions). There is as yet no
theory for the form and magnitude of these terms, which must presently be supplied by the
user.

To summarize, most of the strategies currently used for rezoning do not guarantee an
unfolded mesh, nor do they guarantee that the smoothed mesh is close to the Lagrangian
mesh. The coordinate-based approach seems a more appropriate framework in which to
base our approach, and here both the local and the global approaches have attractive
features.

2.2. Motivation and General Description

In this section we give an overview of our method, which consists of two components:
a sequence of local optimizations followed by a single global optimization (see flowchart
in Fig. 1). The local optimization—stage I in Fig. 1—defines a “reference” Jacobian (Jref)
that incorporates our definition of mesh quality at each point of the grid. The “rezoned”
grid results from minimizing a global objective function that measures the distance (in a
least-squares sense) between the Jacobians of the rezoned grid and the reference Jacobians—
stage II in Fig. 1. The global optimization resolves incompatibilities of the locally defined
RJMs in a smooth manner.

Because of the fundamental nature of the Jacobian matrix, we begin by elucidating its
role in the map x(ξ, η), y(ξ, η) from logical space (ξ, η) to physical space (x, y). The most
general description of the continuum map is provided by its Jacobian matrix,

J =
(

J11 J12

J21 J22

)
=

(
xξ xη

yξ yη

)
,

where xξ = ∂x/∂ξ , xη = ∂x/∂η, etc. For our purposes it is convenient to represent the



98 KNUPP, MARGOLIN, AND SHASHKOV

Virtual Movement of
     Central Node
Minimization of Local
Smoothness Functional

Construction of RJMs
     (using connectivity)

Jref

REZONED GRID

LAGRANGIAN GRID

Minimizing Global Functional

   (Direct Optimization)

Matrices (RJM)      

Patches from Lagrangian
                  Grid

  (using connectivity)

Construction of Reference JacobianI.

I.1

I.2

I.3

II.

FIG. 1. Flowchart of rezoning algorithm.

Jacobian matrix J in terms of two vectors in physical space, eξ = (xξ , yξ )
T , eη = (xη, yη)

T

J = (eξ | eη). (2.1)

Since the map is one-to-one, to each point in physical space [say (xo, yo)] there corresponds
a unique point in logical space (ξo, ηo). Now the straight lines in logical space ξ = ξo

and η = ηo map into curved “coordinate” lines in real space, whose intersection is the
point (xo, yo). The vectors eξ and eη are the tangent vectors to the coordinate lines at the
intersection point. This is illustrated in Fig. 2b.

The tangent vectors describe the orientation of the coordinate lines and how rapidly the
x- and y-coordinates change along them. The normalized scalar product of the tangent
vectors, eξ · eη, is the cosine of the angle between the coordinate lines. The determinant of
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FIG. 2. (a) Image of lines ξ = const and η = const under map x(ξ, η), y(ξ, η). (b) Coordinate lines and tangent
vectors.

the Jacobian matrix, |J |, which is the cross product of tangent vectors eξ × eη, is the image
area in physical space of an elementary area in logical space. Thus, knowing the tangent
vectors (which is the same as knowing the Jacobian matrix) for all ξ and η gives a full
description of the map. Indeed, it can be shown that given the Jacobian matrix obtained
from a valid map (to be defined shortly) at any point (ξ, η), and consistent (x, y) on the
boundary, one can construct the map (that is, the functions x = x(ξ, η), y = y(ξ, η)) for the
entire domain. One can easily verify that x = x(ξ, η), y = y(ξ, η) satisfy two decoupled
Poisson equations with Dirichlet boundary conditions

∂2x

∂ξ 2
+ ∂2x

∂η2
= ∂ J11

∂ξ
+ ∂ J12

∂η
,

∂2 y

∂ξ 2
+ ∂2 y

∂η2
= ∂ J21

∂ξ
+ ∂ J22

∂η
. (2.2)

These Poisson equations have unique solutions that define the map if the elements of the
Jacobian matrix constitute a valid map.

Because of the fundamental nature of the Jacobian matrix one can expect that if two maps
have similar Jacobian matrices, then the maps themselves must be similar. This leads to the
following idea. Let us first construct the Jacobian matrix as a function of (ξ, η)—termed
the reference Jacobian matrix (RJM or Jref). This RJM incorporates the desired properties
of the map. It is clear that in general it is not possible to construct a valid map for arbitrary
specified RJMs. For example, if the RJM

J̃ =
(

J̃ 11 J̃ 12

J̃ 21 J̃ 22

)

is to define a valid map x̃(ξ, η), ỹ(ξ, η), then the conditions

∂ J̃ 11/∂η = ∂ J̃ 12/∂ξ and ∂ J̃ 21/∂ξ = ∂ J̃ 22/∂η (2.3)
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must be satisfied because of the commutability of differentiation,

∂2 x̃

∂ξ∂η
= ∂2 x̃

∂η∂ξ
,

∂2 ỹ

∂ξ∂η
= ∂2 ỹ

∂η∂ξ
.

Further, for this to be a valid map, the determinant of J̃ has to be positive everywhere. There
are other compatibility conditions that J̃ has to satisfy as well to be a valid map.

Therefore, our strategy will be to find a valid map whose Jacobian matrix is as close as
possible to the RJM. This can be done by constructing and minimizing a nonlinear functional
that measures the deviation of the (unknown) Jacobian matrix, J , of a desired map from a
Jref, in a least-squares sense at every point of the domain,

F(x(ξ, η), y(ξ, η)) =
∫ 1

0

∫ 1

0

‖J − Jref‖2
F

|J |/|Jref| dξ dη. (2.4)

Here ‖ · ‖F is the Euclidean (Frobenius) norm of the matrix, i.e. is the square root of the sum
of the squares of all elements of the matrix, and | · | is the determinant of the matrix. To ensure
that the functional is bounded from below, we restrict the set of admissible maps to those
that are invertible and whose determinants are positive. Note that the nonlinear functional
includes a barrier function (|J |/Jref|) in the denominator (cf. [13, 44]). This barrier function
penalizes any solution that is close to being degenerate, i.e., where the sought for Jacobian
|J | is much smaller than the determinant of the RJM or perhaps even vanishes.

So far, our remarks have focused on the continuum formulation of the rezoning problem.
Our general framework for constructing rezoned grids will be based on the discrete version
of the minimization problem (2.4). In the discrete case, the tangent vectors eξ and eη become
the edges of the cell (see Fig. 3). In general, each grid point belongs to four different cells
and so has four possible pairs of tangent vectors. Each set of tangent vectors defines a
triangle and also a Jacobian matrix, similar to (2.1), where the roles of eξ , eη are now played

(i,j+1/2)eη

eξ (i+1/2,j+1)

ξ (i+1/2,j)
e

(i+1,j+1/2)eη

(1,1)

(1,N)

j

i

(M,N)

(M,1)

(i,j)

(1,j)

(M,j)

(i,M)

(i,1)

x

y

FIG. 3. Logically rectangular grid and discrete tangent vectors.
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by edge tangent vectors. Thus we have four different Jacobian matrices, each related to a
distinct triangle at the grid point.

Another way to view this is to say that each cell defines four triangles, two formed by the
bisection of the cell by one of its diagonals, two more by the other diagonal. The totality of
the triangles defined by the cells is of course the same set as that defined by the nodes in
the previous paragraph. Now for a rectangular cell to be convex (unfolded) each of these
triangles must have positive area. Thus the condition that each of the triangles associated
with a node has positive area (i.e., the determinant of the |J | > 0), extended to the complete
set of nodes, guarantees that the mesh is unfolded.

As in the continuous case, the tangent vectors define geometry of the grid: the vector cross
product is twice the area of the triangle; the scalar product defines angles of the triangle; and
vectors themselves define the orientation and lengths of the sides of the quadrilateral cells.
We note that the compatibility condition (2.3) in the discrete case is played by following
the equation eξi+ 1

2 , j+1 − eξi+ 1
2 , j = eηi+1, j+ 1

2
− eηi, j+ 1

2
, which can be rewritten as

eξi+ 1
2 , j + eηi+1, j+ 1

2
= eηi, j+ 1

2
+ eξi+ 1

2 , j+1.

This last equation guarantees that the cell is a closed figure, or in other words that one can
reach node (i + 1, j + 1) starting from node (i, j) using either pair of cell edges. As in the
case of a continuous map, if one has a set of edge tangent vectors that are obtained from a
valid grid and coordinates of grid points on the boundary one can reconstruct the entire grid.

Following the logic described for the continuous map, to construct a grid with desired
properties we first define a set of reference Jacobian matrices (RJMs) in each triangle, by
specifying reference edge vectors. One could employ (and even combine) different strategies
to construct the RJMs. Here we provide some motivation for the particular strategy that we
develop in more detail in Section 4—stage I in Fig. 1.

In the general framework of ALE simulations and of our algorithm in particular, we need
to consider three different grids. At the beginning of the computational cycle, we have the
grid from the previous (i.e., nth time level) cycle. We assume that this grid is “good” quality
both in the sense that it is unfolded and in the sense that it optimally represents the flow
at this time. We term this the “initial” grid. A second grid is the Lagrangian grid at the
(n + 1)th time level. This grid is obtained by moving each of the nodes of the initial grid
with the Lagrangian fluid velocity. We term this the “Lagrangian” grid and note that it is not
necessarily optimal and so may require rezoning (i.e., adjusting the grid). In general terms,
our rezone strategy is to improve the geometrical quality of the Lagrangian grid where
necessary, while preserving the Lagrangian grid as much as possible. The grid resulting
from the rezoning algorithm is called the “rezoned” grid. This rezoned grid will become the
initial grid for the next computational cycle. Finally, we need to define the flow parameters
on the rezoned grid. This is done by remapping (i.e., redefining the solution on the new
grid) from the Lagrangian grid.

There are many reasons to maintain the rezoned grid close to the Lagrangian grid. Of
greatest importance is that the Lagrangian grid contains important information about the
flow. For example, a Lagrangian grid follows the interface between different materials.
More generally, the Lagrangian grid eliminates the numerical diffusion associated with
approximating the advective terms, which vanish in this representation.

A second reason is that the accuracy of the remapping stage strongly depends on how close
the Lagrangian and the rezoned grid are. A third reason is that when the Lagrangian and the
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rezoned grids are close, one can use local remapping procedures (e.g., based on advection)
rather than more general global remappers based on interpolation; local remappers are
typically much more efficient.

On the other hand, the choice of a purely Lagrangian calculation is usually not optimal.
At a minimum, we should require that the grid remain unfolded to maintain a physically
realizable solution. In general, the discretization error will be smaller on a “smooth” grid,
an advantage that must be weighed against the error resulting from the remap.

As asserted above, the Jacobian matrix is the natural object with which to analyze and
control the properties of the grid. In particular, to produce a smooth grid that is close
to the Lagrangian grid, we begin with the Jacobians that correspond to the Lagrangian
grid and modify them to form the RJMs. These modifications will be devised locally. For
example, on the 2D structured grid, we consider a central grid point and its nearest eight
neighbors which form a patch of four cells—stage I.1 in Fig. 1. Each cell can be subdivided
into two sets of two triangles by its two principal diagonals. Hence there are a total of
16 triangles in the patch, 12 of which will be altered by the displacement of the central
node.

Now suppose that we have some method of choosing a better position for this central
node, while keeping all the other grid points of the patch fixed—stage I.2 in Fig. 1. This
“virtual” displacement leads to new edge vectors (reference edge vectors) and hence a new
Jacobian for each of the 12 triangles—stage I.3 in Fig. 1. These new Jacobians are the RJMs
at this grid point. We describe a method of choosing this displacement in detail in Section 4.

Finally, let us note that geometry is not the only basis for evaluating the smoothness of
the grid. For example, one classic strategy in multimaterial simulations is based on mass
matching—neighboring cells should have roughly the same mass. This inertial matching
serves to mitigate the unphysical reflection of shock waves at material interfaces. The
zoning to achieve mass matching depends on the density field as well as the geometry.
Other dependencies include the flow itself, where the zoning may be chosen to represent
the expected symmetries of the solution, and even the goals of the modeler, who may have
a special interest in more finely resolving a particular region of the flow.

In the future, we hope to construct a framework general enough to deal with all these issues
and constraints. For the moment, we are pursuing the less ambitious strategy of building
into the framework the flexibility to control and even turn off the rezoning automatically.

As in the continuous case, the reference edge vectors that participate in construction
of RJMs in general do not satisfy conditions (2.2). We construct the discrete analog of
the functional (2.4) using Jacobians defined in triangles—stage II in Fig. 1. We solve the
minimization problem directly, rather than using the discrete analog of the Euler–Lagrange
equations, which are analytically (but not numerically) equivalent. The minimization pro-
cedure is discussed in Section 3.2. We note here that RJMs are translationally invariant, and
therefore, in specifying the RJMs related to triangles, we are not imposing restrictions on the
location of this triangle, but only on its shape, size, and orientation. The global optimization
procedure takes advantage of this fact and resolves incompatibilities of the locally defined
RJMs in a smooth manner.

We conclude this section by noting an idea similar to the RJM to adapt structured
meshes [26]. There the strategy was based on a variational principle related to the “smooth-
ness” functional of [6] and led to Euler–Lagrange equations that were a weighted form
of Winslow’s equations [45]. It was demonstrated numerically that the method produces
grids whose Jacobian matrix agrees with the reference Jacobian matrix, provided the latter
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was constructed from a valid grid. Furthermore, the method could align mesh coordi-
nate lines with desired directions given by the reference Jacobian matrix. The primary
differences between the present method and that in [26] are (1) we do not use Euler–
Lagrange equations but rather directly minimize a discrete analog of the functional; (2) we
use a barrier method similar to that of [13, 44] to ensure an unfolded grid; (3) we use
the Jacobian matrix, rather than its inverse. The reasons for introducing these differences
are (1) it is not clear that the method in [26] guarantees positive area cells (especially in three
dimensions); (2) the use of the Jacobian matrix yields a simpler algorithm than would result
from using its inverse; (3) the method of direct minimization given here can be extended to
unstructured meshes whereas the formulation in [26] is limited to structured meshes.1

To summarize, we believe that the general framework described above, based on the
minimization of a discrete analog of a global functional (2.4) can be extended to rezone a
wide class of grids whose desirable properties include adaptivity as well as smoothness, if
these properties can be described in terms of RJMs.

3. CONSTRUCTION OF THE GRID FOR A GIVEN REFERENCE JACOBIAN MATRIX

In this section we describe the construction of the objective function (functional) and
our optimization procedure in more detail—stage II in Fig. 1. We assume we are given a
reference Jacobian matrix Jref with positive determinant at each grid point; our goal is to
construct a global map whose Jacobian is close to the RJM and that has positive determinant
everywhere (so that the grid remains unfolded).

In Section 3.1 we introduce notation for grid nodes, edges, and triangles, and we con-
struct the discrete Jacobian matrices and the discrete objective function to be minimized.
In Section 3.2 we describe the numerical optimization procedure. At present there is no
proof that the minimization of the discrete functional is unique. In Section 3.3, we present
numerical examples that suggest the uniqueness of the resulting grid.

3.1. Discrete Objective Function

We adopt the following notation to describe the nodes, edges, and triangles associated
with a logically rectangular grid. Grid points are labeled by two indices, i = 0, . . . , I and
j = 0, . . . , J , which are the coordinates in logical space. The increments of the logical
coordinates are �ξ = 1

I and �η = 1
J . The grid point (i, j) has coordinates xi, j and yi, j ,

or in vector notation, xi, j = (xi, j , yi, j )
T . The computational cells have fractional indices

(i + 1
2 , j + 1

2 ), where i = 0, . . . , I − 1; j = 0, . . . , J − 1. ξ -edges have indices (i + 1
2 , j)

and η-edges have indices (i, j + 1
2 ).

At each interior node, we define four triangles as shown in Fig. 4; for nodes on the
boundary there are only two triangles, and corner nodes have just one. Triangles are labeled
by two indices—a subscript that specifies the node, and a superscript that specifies the cell.
For example, T

i+ 1
2 , j+ 1

2
i, j signifies the triangle in cell (i + 1

2 , j + 1
2 ) with sides (i + 1

2 , j) and
(i + 1, j + 1

2 ) (see Fig. 4).

1 We will pursue the extension of the present method to three dimensions and to unstructured meshes in a later
paper. (See, for example, M. Shashkov and P. Knupp, Optimization-based reference-matrix rezone strategies for
arbitrary Lagrangian–Eulerian methods on unstructured meshes, in Proceedings of 10th International Meshing
Round Table (Sandia National Laboratories, Newport Beach, CA, 2001), pp. 167–176.)



104 KNUPP, MARGOLIN, AND SHASHKOV

Ti,j
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T i+1/2,j+1/2
i,j

ξe
i−1/2j

T i,j

i−1/2.j+1/2

ξe
i+1/2,j

eη
i,j−1/2

eη
i,j+1/2

i+1/2,j−1/2

i,j
T

(i+1,j)(i−1,j)

(i,j−1)

(i,j+1)

(i+1,j+1)(i−1,j+1)

(i+1,j−1)(i−1,j+1)

(i,j)

FIG. 4. Discrete tangential vectors and triangle (Jacobian matrix).

The discrete analogs of the tangential vectors eξ and eη defined in Section 2 are associated
with cell edges (see Figs. 3 and 4) and will be written as follows:

eξi+ 1
2 , j = xi+1, j − xi, j , eηi, j+ 1

2
= xi, j+1 − xi, j . (3.1)

Now in the continuous case of a smooth map, the Jacobian matrix (2.1) is uniquely defined
everywhere. In the discrete case we can define four different Jacobian matrices (which
are each approximations of the continuous Jacobian matrix) using the four sets of discrete
tangential vectors that meet at each grid point:

J
i+ 1

2 , j+ 1
2

i, j =
(

eξi+ 1
2 , j

∣∣∣ eηi, j+ 1
2

)
, J

i− 1
2 , j+ 1

2
i, j =

(
eξi− 1

2 , j

∣∣∣ eηi, j+ 1
2

)
,

(3.2)
J

i− 1
2 , j− 1

2
i, j =

(
eξi− 1

2 , j

∣∣∣ eηi, j− 1
2

)
, J

i+ 1
2 , j− 1

2
i, j =

(
eξi+ 1

2 , j

∣∣∣ eηi, j− 1
2

)
.

We use the same index notation for Jacobian matrices as for triangles. This reinforces the
relation between discrete a Jacobian matrix and its corresponding triangle.

The discrete objective function that is minimized has the form

F(. . . xi j , yi j , . . .) =
∑
cells

( ∑
n∈St (c)

∥∥J c
n − (Jref)

c
n

∥∥2
F∣∣J c

n

∣∣/∣∣(Jref)c
n

∣∣
)

, (3.3)

where J c
n denotes the Jacobian at node n and cell c, and where the stencil St (c) consists

of all vertices (nodes) of the cell c. The domain of the discrete function includes both the
interior and boundary nodes. We constrain the boundary nodes to remain on the boundary
of the physical domain.

The individual denominators of the objective function (3.3) each contains the determinant
of a Jacobian matrix; therefore F will become infinite if any of these determinants vanish. It
was shown in [44] that such an objective function will not produce folded elements provided
that the initial guess of the iterative procedure has no folded elements. We refer to such



REFERENCE JACOBIAN REZONE STRATEGIES 105

an objective function as possessing a “barrier” against inverted elements. In our rezoning
algorithm, we insure that the initial mesh is unfolded.

3.2. Numerical Optimization Algorithm

The minimization of the discrete objective function (3.3) belongs to the class of so-called
nonlinear least-squares problems. There are well-developed numerical methods that deal
with this class of optimization problems; however, standard methods (see, for example,
[37]) require modification to take into account the specifics of our problem.

First, we assume that the initial mesh is unfolded (i.e., |J c
n | > 0) so that the optimization

begins on the “correct side” of the barrier. After each update of all nodal positions, we
check that the new grid is valid (i.e., the areas of all triangles remain positive). When the
update results in a folded mesh, the mesh is rejected and the objective function is set to a
number that is large with respect to some characteristic length. There are two criteria for
ending the iteration: first, the iteration is stopped when there is no grid movement that will
further reduce the value of the objective function; second, the iteration is stopped when
the largest change in position of any grid node is smaller than some preset, user-supplied
value. This algorithm for minimizing the objective function has proved robust. We have not
investigated issues of computational efficiency.

In this framework, one can introduce constraints on the movement of internal points as
well. This may be desirable, for example, when there is a material interface that should be
maintained as a Lagrangian curve. In such a case, the algorithm would require a parametric
description of the interface, and instead of needing two coordinates, a node on the inter-
face will have just one parameter that enters the objective function. We will postpone this
development to future work.

Below we present flowcharts that describe a minimization procedure that takes into
account the specifics of our problem. We note that as yet there is no theoretical proof that a
unique global minimum exists; however, our numerical experiments support the conjecture
that unique minima do exist.

3.2.1. Optimization Procedure

The basic optimization technique is a line search procedure coupled with a conjugate
gradient algorithm to determine the search direction; see Chapters 3 and 5 of [37]. The
optimization procedure is iterative, beginning with an initial (Lagrangian) mesh. The fea-
sible region consists of the mesh node configurations that yield a valid mesh. The initial
mesh is assumed to lie in the feasible region. This assumption is checked at the beginning
of the optimization procedure. The optimization procedure is initialized by computing the
value of the objective function F0 = F(. . . , x0

i, j , y0
i, j , . . .) on the initial mesh, and the initial

gradient (∇F)0 . The initial search direction is p0 = −(∇F)0 (for nodes on the boundary
the search direction will be tangent to the boundary).

The basic steps in the iteration procedure are:

• Increment the iteration counter k; halt if the maximum allowable count is exceeded
(⇒ procedure failed to find a local minimum).

• Compute the maximum component of the gradient vector in absolute value (i.e., the
�∞ norm); halt if this is less than some initial tolerance τ (⇒ procedure has produced an
iterate close to a local minimum); τ = 1 × 10−6 works well in practice.
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• Given the search direction pk , perform the line search to get the step length αk > 0.
• If αk = 0, check the solution by changing the search direction to be minus the gradient

(steepest descent) and redoing the line search; if the step length is still zero, then the iteration
successfully halts at a local minimum.

• If αk > 0, update the iterate (mesh): xk+1 = xk + αk pk .
• Evaluate the objective function on the new iterate Fk+1 = F(. . . , xk+1

i, j , yk+1
i, j , . . .).

• Evaluate the gradient (∇F)k+1 on the new iterate.
• Compute a new search direction based on the conjugate gradient scheme

pk+1 = −(∇F)k+1 + βk pk,

with βk given by either the Fletcher–Reeves formula,

βF R = |(∇F)k+1|2/|(∇F)k |2,

or the Polak–Ribiere formulas [37],

βP R = βF R − (∇F)k+1 · (∇F)k/|(∇F)k |2.

• Go back to the start of this itemization.

3.2.2. Calculation of the Gradient

The evaluation of the objective function is straightforward, given the mesh. The gradient
of the objective function is computed numerically. For each node (i, j) of the mesh one has
coordinates xi, j , yi, j . The (i, j)th component of the gradient is approximated by

∂ F/∂xi, j = [F(. . . , xi, j + ε, yi, j , . . .) − F(. . . , xi, j , yi, j , . . .)]/ε

∂ F/∂yi, j = [F(. . . , xi, j , yi, j + ε, . . .) − F(. . . , xi, j , yi, j , . . .)]/ε,

where ε is chosen as some small fixed number (1 × 10−7 works well in practice), which
ensures that the trial mesh remains in the feasible region. The alternative to this numerical
computation of the gradient is to first analytically calculate the gradient of F given the
formula for the objective function, and then evaluate the analytic formula for the gradient
on the computer. The advantage of numerically computing the gradient without using an
analytic formula is that, in general, the analytic formulas are very complex and time con-
suming to evaluate. Since the optimal search direction is not known, the small errors in
the gradient due to the approximation do not significantly affect the speed of the overall
optimization procedure.

3.2.3. The Line Search Algorithm

The inexact line search algorithm seeks a scalar α > 0 such that the univariate function

φ(α) = F(xk + αpk)

is minimized or is made significantly smaller than F(xk). A fixed search direction pk is
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given. The line search begins with an initial guess for α, say α = 1, and an initial mesh, xk .
Objective function values are compared at various trial meshes and the initial value of α is
either increased geometrically by a factor ρ or decreased by 1/ρ. The line search procedure
consists of the following steps:

• Find an α for which the trial mesh xt = xk + αpk lies inside the feasible region. This
is done by decreasing α by the factor 1/ρ until the trial mesh lies in the feasible region.
Since xk lies in the feasible region, we know there exists α sufficiently small so that xt is
feasible.

• If φ(α) ≥ φ(0), decrease α until φ(α) ≤ φ(0). Continue decreasing α until an increase
in φ(α) is found; return the last value of α.

• Else, increase α until either no further decreases in φ are found or until xt lies outside
the feasible region.

3.3. Numerical Examples

Here we offer three examples to illustrate the utility of our procedure. In the first example,
we consider an RJM derived from a smooth map. In the second example, we consider an
RJM derived from a map that is not smooth (i.e., is nondifferentiable). In the third example,
we consider an RJM that is not derived from a map at all. In each case we use a variety
of (valid) initial grids and show that the final grid is independent of this choice. In the first
case, the minimal value of the objective function is 0 and the final grid is that derived from
the smooth map.

Let the smooth map from the unit square to the physical square be

x(ξ, η) = ξ + ε sin (2πξ) sin (2πη), y(ξ, η) = η + ε sin (2πξ) sin (2πη), (3.4)

where ε is a parameter that controls the deviation of the map from the identity. The map on
the left in Fig. 5 shows the grid derived from the map with ε = 0.1. The RJM is computed
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FIG. 5. (a) Smooth grid. (b) Nonsmooth grid.
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FIG. 6. Different initial guesses. (a) Random grid. (b) Smooth grid. (c) Tensor product grid.

analytically by taking the appropriate derivatives of the map. The minimization of the
objective function using this reference Jacobian and the three initial grids (a), (b), and (c)
in Fig. 6 leads consistently to the grid derived from the analytic map.

The second example illustrates the uniqueness of the final grid even when the map is
not smooth (nondifferentiable) on a set of curves, regardless of the initial grid used in the
minimization. The nonsmooth grid shown on the right in Fig. 5 is derived from the map that
is identical to Eq. (3.4) everywhere except on the square [0 ≤ ξ < 0.5] × [0 ≤ η < 0.5]; on
this subdomain the map is the identity x = ξ , y = η. Although this map is not smooth, it is
continuous.

On this grid one can easily derive analytic expressions for the derivatives xξ , xη, yξ , yη

everywhere except on the line segments ξ = 0.5, 0 ≤ η < 0.5 and η = 0.5, 0 ≤ ξ < 0.5.
Since the reference Jacobian is computed using cell edges, the derivatives exist where
needed. When computing the RJM in the discrete case, these derivatives are computed at
the middle of the edges using exact formulas and then multiplied by �ξ = 1/I, �η = 1/J
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FIG. 7. (a) Discontinuous map. (b) Unique grid obtained by optimization.

appropriately to obtain �x and �y along the edges. We use the same set of initial guesses
as in the first example (see grids in Fig. 6) in the minimization process, with the result that
the final grid is independent of the initial guess. The lack of sensitivity to the initial grid
suggests that the discrete functional has a unique minimum.

In the third example, there is no map corresponding to the reference Jacobian matrix.
The reference Jacobian matrix in this example was constructed by composing two maps.
The first map is defined on the closed square centered at ξ = 0.5, η = 0.5 with side 0.5,
and consists of the identity. The second map is defined by Eq. (3.4) on the subdomain
consisting of the unit square minus the closed inner square subdomain. The resulting map
is not continuous on the subdomain boundary (see Fig. 7a). The reference Jacobian matrix
can still be constructed. Once again we use the three initial grids of Fig. 6. The final grid is
shown in Fig. 7b; it is smooth and independent of the initial grid.

4. CONSTRUCTION OF REFERENCE JACOBIAN MATRICES

Here we describe our local procedure for optimizing geometrical mesh quality and its
properties, leading to the construction of the RJMs—stage I in Fig. 1. We present a heuristic
connection to the Winslow grid generator.

On a 2D structured mesh, each interior node (i, j) is shared by four quadrilaterals (i.e.,
cells). The union of these quadrilaterals is an octagon, which we term the local patch of
the central node (i, j)—stage I.1 in Fig. 1. There are four tangential vectors connecting
the central node to its four nearest neighbors, eξi+ 1

2 , j , eηi, j+ 1
2
, eξi− 1

2 , j , and eηi, j− 1
2
. These

tangential vectors, taken cyclically two at a time, define the four Jacobian matrices associated
with the central node (cf. Fig. 8).

Now let us fix the exterior vertices of the octagon in their Lagrangian positions, while
allowing the position of the central node to vary. This “virtual” displacement alters each of
the tangential vectors and also the Jacobians associated with the central node, leading to
the reference Jacobians.
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FIG. 8. Virtual movement of central node, and construction of four RJMs. Lagrangian nodes are marked by
filled circles.

At this point, we would like to emphasize certain points. First, it is important to note
that the virtual displacement at any node does not affect the patch geometry of any other
node; hence it cannot affect the reference Jacobians at any other node either. Second, many
strategies may be used to define the virtual displacement. Third, possibly excepting the
particular choice of strategy, nothing in this framework of defining the reference Jacobians
depends on the grid being structured or 2D.

Based on the previous comments, it is desirable to choose a strategy to displace the central
node that also is (or can be generalized to be) independent of whether the grid is structured.
This will facilitate the extension of all the results in this paper to unstructured grids. We
describe such a strategy next.

4.1. Exposition of the Winslow Algorithm and Its Variational Version

To set the stage, we briefly review and interpret the classical approach to grid generation
based on Winslow’s original paper [45]. Suppose we want to construct a logically rectangular
grid in a 2D domain where we can distinguish left, right, top, and bottom boundaries. We
introduce dependent functions ξ(x, y) and η(x, y) (one might think of them as temperatures)
which are solutions of corresponding stationary heat equations (Laplace equations),

∇2ξ = 0, ∇2η = 0,

with boundary conditions

ξ |(x,y)∈�L = 0, ξ |(x,y)∈�R = 1; ξ |(x,y)∈�B = ξB(x, y), ξ |(x,y)∈�T = ξT (x, y)

and

η|(x,y)∈�L = ηL(x, y), η|(x,y)∈�R = ηR(x, y); η|(x,y)∈�B = 0, η|(x,y)∈�T = 1.
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Here, for example, ξL(x, y) is a given function whose value monotonically increases from 0
to 1 moves on the left boundary from the bottom to the top boundary; the functions ξR(x, y),
ηB(x, y), and ηT (x, y) vary in a similar way.

Because of the maximum principle, the maximum and minimum values of ξ(x, y) and
η(x, y) lie on the boundary; that is, all values inside the domain must lie between 0 and
1. The solution consists of two sets of equipotential curves, one connecting the top and
bottom boundaries, the other connecting the left and right boundaries. Since the curves are
equipotentials, there is no intersection of the curves within either set. Now consider the
two particular subsets of equipotentials, ξi (x, y) = i/I, i = 0, 1, . . . , I, and η j (x, y) =
j/J, j = 0, 1, . . . , J . The intersections of these two sets of curves can be chosen as the
nodes of a logically rectangular grid. Furthermore, since ξ and η are the solutions of Laplace
equations, they are smooth functions.

As a practical technique for implementing these ideas, Winslow in his pioneering paper
[45] suggested that one invert the choice of dependent and independent variables, leading
to a system of quasilinear elliptic equations for x(ξ, η), y(ξ, η),

g22xξξ − 2g12xξη + g11xηη = 0, g22 yξξ − 2g12 yξη + g11 yηη = 0, (4.1)

where

g11 = x2
ξ + y2

ξ , g12 = xξ xη + yξ yη, g22 = x2
η + y2

η . (4.2)

This system of equations is discretized on the rectangular grid in (ξ, η) space and solved
numerically to find the positions of the grid nodes xi, j and yi, j (see Section 6.2 for more
details).

It is well known (see for example [43]) that Laplace’s equation for ξ (as well as for η)
has a variational formulation:

min
ξ

Fξ ; Fξ (ξ) =
∫

V
(grad ξ)2 dV =

∫
V
{(ξx )

2 + (ξy)
2} dV (4.3)

min
η

Fη; Fη(η) =
∫

V
(grad η)2 dV =

∫
V
{(ηx )

2 + (ηy)
2} dV . (4.4)

This fact was first used in the framework of grid generation by Brackbill and Saltzman [6],
where the functionals Fξ and Fη were combined and the resulting functional was named
the “smoothness” functional:

F(ξ, η) =
∫

V
{(ξx )

2 + (ξy)
2 + (ηx )

2 + (ηy)
2} dV . (4.5)

The minimization of this functional is analytically equivalent to the solution of the two
Laplace equations for ξ and η. We next invert the variables in the smoothness functional
using the well known relations

ξx = yη/|J |, ξy = −xη/|J |, (4.6)

ηx = −yξ /|J |, ηy = xξ /|J |, (4.7)

where

J =
(

xξ xη

yξ yη

)
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is the Jacobian matrix of map x(ξ, η), y(ξ, η), and |J | is its determinant. Using these
relations and the fact that dV = |J | dξ dη, we can rewrite the smoothness functional as
follows:

F(x, y) =
∫ 1

0

∫ 1

0

[(xξ )
2 + (yξ )

2] + [(xη)
2 + (yη)

2]

|J | dξ dη. (4.8)

One very important feature that can be seen explicitly in the variational formulation is
that this functional has a barrier; i.e., the value of the functional approaches infinity when
the unknown map approaches any degenerate map where |J | = 0. This observation explains
how the Winslow grid generator produces unfolded grids [13].

Using the Euclidean (Frobenius) norm of a matrix (‖A‖ = (
∑2

k=1

∑2
l=1 a2

k,l)
1/2), one

can write the smoothness functional (4.8) in the form [30]

F(x, y) =
∫ 1

0

∫ 1

0

‖J‖2

|J | dξ dη. (4.9)

In 2D this expression also can be interpreted in the framework of a general theory based
on matrix norms and condition numbers [29]. In fact, the condition number of the Jacobian
matrix is

k(J ) = ‖J‖ · ‖J−1‖. (4.10)

Now in 2D

J−1 = 1

|J |
(

yη −xη

−yξ xξ

)

so that

‖J−1‖ = 1

|J | ‖J‖, and k(J ) = ‖J‖2

|J | . (4.11)

Therefore k(J ) is the same as the integrand in (4.9). In 3D, the condition number cannot
be written in this way and the minimization of a functional based on the integral of the
condition number yields a different way to construct the grid, which has some theoretical
and practical advantages [29].

There is a clear geometrical interpretation for the expression ‖J‖2/|J |, which appears in
the smoothness functional. We recall that the Jacobian matrix is formed from the vectors
tangential to the coordinate lines (Fig. 3 and formula (2.1)). Thus ‖J‖2 = |eξ |2 + |eη|2 is
the sum of the squares of the lengths of the elementary tangential vectors, and |J | = eξ × eη

is the area of elementary parallelogram constructed from the tangential vectors. That is,

F(x, y) =
∫ 1

0

∫ 1

0

|eξ |2 + |eη|2
eξ × eη

dξ dη. (4.12)

Now let us consider the discrete case. Using the definition (3.1) of the discrete tangential
vectors, a discrete analog of (4.12) can be written as

Fh = 1

2

∑
(i, j)∈nodes


 1∑

k,l=± 1
2

|eξi+k, j |2 + |eηi, j+l |2
eξi+k, j × eηi, j+l


. (4.13)
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The interior sum contains only two terms corresponding to nodes on the boundary, and only
one term for the corner nodes. The factor 1/2 appears in the discrete functional because
each quadrilateral is covered twice.

Relying on the geometrical interpretation of the terms participating in this functional, we
write

Fh =
∑

(i, j)∈nodes


 1∑

k,l=± 1
2

lξ 2
i+k, j + lη2

i, j+l

Ai+k, j+l
i, j


, (4.14)

where lξ and lη are the lengths of the corresponding sides of the triangles, and A is the area
of the triangle. We call this the global Winslow functional. When this global functional is
restricted to a patch, with only the central node being allowed to vary, we call this the local
Winslow functional.

4.2. Local Mesh Quality Optimization

We use the local realization of the Winslow functional to choose the new virtual position
of the central node of a patch—stage I.2 in Fig. 1. We group those terms in (4.14) that
depend on the position of the central node (i, j)—i.e., terms related to the twelve triangles

T
i+ 1

2 , j+ 1
2

i, j , T
i− 1

2 , j+ 1
2

i, j , T
i− 1

2 , j− 1
2

i, j , T
i+ 1

2 , j− 1
2

i, j , T
i+ 1

2 , j+ 1
2

i+1, j , T
i+ 1

2 , j− 1
2

i+1, j ,
(4.15)

T
i− 1

2 , j+ 1
2

i−1, j , T
i− 1

2 , j− 1
2

i−1, j , T
i+ 1

2 , j+ 1
2

i, j+1 , T
i− 1

2 , j+ 1
2

i, j+1 , T
i+ 1

2 , j− 1
2

i, j−1 , T
i− 1

2 , j− 1
2

i, j−1

to form the local functional

Fh
L

(
xs

i, j , ys
i, j

) =
1∑

k,l=± 1
2

lξ 2
i+k, j + lη2

i, j+l

Ai+k, j+l
i, j

+
1∑

l=± 1
2

lξ 2
i+ 1

2 , j
+ lη2

i+1, j+l

A
i+ 1
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. (4.16)

The optimized position xs
i, j , ys

i, j is determined by (locally) minimizing this local functional
of two variables (the coordinates of the central node) with all other coordinates held fixed
at their Lagrangian values.

We define a feasible setF consisting of all virtual positions of the central point that ensure
positive areas of all twelve triangles (4.15). Note that when the patch—the octagon of four
cells surrounding the central node—is convex, the feasible set consists of the diamond
formed by vertices (i + 1, j), (i, j + 1), (i − 1, j), (i, j − 1). More generally, the feasible
set is the intersection of twelve half-planes, each being defined by the side of the triangle
opposite the central node; it is a convex polygon and is not empty because xL

i, j ∈ F by
assumption.

Clearly, if we use the optimization procedure described in Section 3.2 and use xL
i, j as

the initial guess, then the point xs
i, j = (xs

i, j , ys
i, j )

T that leads to the minimum of the local
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FIG. 9. Local smoothing. (a) Lagrangian and smoothed tangential vectors of the four RJMs at node (i, j);
ed is the displacement vector connecting Lagrangian and smoothed central nodes. (b) Reference tangential vectors

eξ r

i+ 1
2 , j

, eηr

i+ 1
2 , j

that define the reference Jacobian matrix J
i+ 1

2 , j+ 1
2

i, j .

functional belongs to the feasible set xs
i, j ∈ F . In addition, because the feasible set is a

convex polygon, the points

xr
i, j = (1 − αi, j )xL

i, j + αi, j xs
i, j ∈ F, 0 ≤ αi, j ≤ 1

are all in the feasible set. That is, any point on the line segment connecting the Lagrangian
and smoothed central points is an admissible displacement (see Fig. 9). The same idea can
be expressed in terms of the reference tangential vectors. If we define

eξ r
i+ 1

2 , j = xL
i+1, j − {

(1 − αi, j )xL
i, j + αi, j xs

i, j

}
,

eηr
i, j+ 1

2
= xL

i, j+1 − {
(1 − αi, j )xL

i, j + αi, j xs
i, j

}
,

then the RJM in the corresponding triangle is (stage I.3 in Fig. 1)

(Jref)
i+ 1

2 , j+ 1
2

i, j =
(
(eξ r )i+ 1

2 , j

∣∣∣ (eηr )i, j+ 1
2

)
.

The parameter αi, j can be used to control how much we want to smooth the Lagrangian
grid and so represents an additional degree of freedom that one can exploit. For example,
one might use αi, j to build in information about the density field and so prevent the re-
zoner from undoing mass matching. For the remainder of this paper, however, we assume
αi, j = 1.

To demonstrate the behavior of the local optimization algorithm (I.2 in Fig. 1), we consider
again the smooth grid shown in Fig. 10a and the nonsmooth grid shown in Fig. 10c (see
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FIG. 10. Examples of local smoothing.

detailed description of these grids in Section 3) and isolate the particular patches that are
marked by “∗” in these figures. In Fig. 10b and 10d these patches are enlarged with solid
lines. The dotted lines in Fig. 10b and 10d show the new reference tangential vectors. Note
that in the smooth grid, the virtual displacement is small, whereas in the nonsmooth grid,
the virtual displacement is much larger.

To summarize, the virtual position of the central node xs
i, j as determined by minimizing

(4.16) retains memory of the Lagrangian grid because the positions of all vertices except
the central node that appear in the local functional are Lagrangian positions. That the virtual
displacement contributes to a smoother grid can be seen by its connection to the Winslow
functional. However our formulation (unlike the Winslow formulation) is not restricted to
structured grids.

It is clear that this approach for constructing the RJM is readily extended to unstructured
grids and to 3D. The role of the patch (the octagon on a 2D structured grid) will be played by
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the union of all cells that share the central node. The RJMs will still be defined in triangles,
or in tetrahedra in 3D, even for unstructured grids. The local functional will contain all
triangles (or tetrahedra) for which the RJM depends on the position of the central node.
For a 2D unstructured grid, each term in the local functional has the same form as in the
structured grid. In 3D for a tetrahedral or hexahedral grid, each term in the local based
on Winslow functional will be the sum of the areas of the three faces divided by the
volume of the corresponding tetrahedron; alternately, one can use the functional based on
the condition number, which has the advantage that even in 3D it is dimensionless. For
general unstructured grids in 3D, there are other extensions of the proposed functional,
which will be explored in future work.

5. EXAMPLES OF REZONED GRIDS

Having the RJMs at each node, we can use the algorithm described in Section 3 to
construct the rezoned grid. We begin by considering the Lagrangian grids introduced in the
previous section (Fig. 10a and c).

In Fig. 11 we compare the Lagrangian and rezoned grids. As one might expect, when
the Lagrangian grid is smooth (Fig. 11a), the rezoned grid is very similar. There are some
differences on the boundary, because our procedure effectively uses one-sided estimates
for the reference tangential vectors on the boundary. As we increase the resolution, the
discrepancies on the boundary and in the interior become less noticeable. In the case of a
random grid (Fig. 11 b), the rezoned grid is significantly different from the Lagrangian grid.
The rezoned random grid is much smoother than but (in an average sense) still close to the
Lagrangian grid.

Next we demonstrate how the rezone procedure works when the Lagrangian grid consists
of subdomains and where the grid is smooth within the subdomains but is not smooth on the
interface between subdomains. We revisit the grid from the previous Section (Fig. 5b). To
make the effect of smoothing more evident, we consider a coarser (11 × 11) grid. In Fig. 12
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FIG. 11. Comparison of Lagrangian and rezoned grids. (a) Smooth Lagrangian grid and corresponding rezoned
grid. (b) Nonsmooth (random) Lagrangian grid and corresponding rezoned grid.
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FIG. 12. Comparison of Lagrangian and rezoned grids, when the Lagrangian grid consists of subdomains and
where the grid is smooth within the subdomains but is not smooth on the interface between subdomains.

we superpose the original and smoothed grids. These results show that if the original grid is
smooth enough, then the rezoner has little effect. The main result of smoothing is to create
a smooth transition zone between the subdomains whose Jacobians in the original map are
different.

Finally, we consider a more extreme example, shown in Fig. 13a. This is called the
Shestakov grid [41] and has been used in many papers to test performance and robustness
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FIG. 13. Shestakov grid and its smoothed version.
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of finite difference and finite element schemes. The rezoned grid shown in Fig. 13b is
noticeably smoother.

6. PRELIMINARY ALE CALCULATIONS

In this section we describe a preliminary ALE calculation of the Rayleigh–Taylor insta-
bility problem, using our new RJM rezone strategy. We say preliminary because a complete
ALE algorithm involves many more issues than just the rezoning strategy described in this
paper. In Section 6.1 we briefly describe the Lagrangian phase and the remapper used in
our calculation. Results are presented in Section 6.3.

We also compare our ALE calculation with one obtained by using a rezone strategy based
on the global Winslow smoothing procedure.

6.1. Lagrangian Phase and Remapping

The explicit Lagrangian phase uses a state-of-the-art methodology described in a recent
series of papers [7, 9–11]. It employs compatible differencing techniques [11], which en-
sure a conservative finite difference method (i.e., mass, momentum, and total energy are
conserved to roundoff error); a new tensor artificial viscosity [10]; and, what is most im-
portant here, subzonal forces that are designed to reduce nonphysical grid movement [9].
The Lagrangian method uses a standard staggered mesh discretization for flow variables
on a logically rectangular grid: coordinates and velocity components are located on ver-
tices (which we call later points), and the thermodynamic variables (density, pressure, and
internal energy) are associated with cell centers [11].

In the subzonal forces approach, one first introduces subzones (Fig. 14a) formed by
connecting the centers of opposite sides of the cell by straight lines.These lines intersect in
the geometrical center of the cell. The quadrilaterals formed this way are called subzones.
Each subzone has its own Lagrangian mass and volume, and therefore density. The internal
energy density in each subzone is taken equal to that of the parent zone. The difference

δp δp

δp
δp

> 0

> 0

< 0

< 0

a

b)a)

p

z

m p
z ρ

p

z,

FIG. 14. Subzonal forces. (a) Subzones, density, and mass specified in subzones; p is the vertex index and z
is the index of the zone. (b) Hourglass motion and corresponding change in subpressures preventing development
of this motion.
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between the subzonal density and that of the parent zone is used to construct subzonal forces
(see [9] for details). The subzonal forces oppose unphysical grid motions.

It is important to note that in a purely Lagrangian simulation, the unphysical grid velocities
are made manifest by the accompanying grid distortion. However, even in ALE simulations
where the distortion can be mitigated by rezoning, these modes may still contaminate the
velocity field and so must be removed.

A typical example is termed an “hourglass” pattern and is shown in Fig. 14b. This pattern
of velocity does not change the volume of the cells; in conventional Lagrangian methods
there is no way to produce restoring forces to oppose this motion. However, the volumes of
the individual subzones do change with hourglassing, and these changes are used to generate
the subzonal pressure forces that combat the growth of the hourglass patterns. The subzonal
force approach has proved very successful in many problems [9], but its interaction with
other physical motions (vorticity, for example), is not very well understood. In particular,
we show that the subzonal forces used in a purely Lagrangian simulation of Rayleigh–
Taylor instability allow calculation to survive, but the results unfortunately are not accurate.
However, in the framework of ALE one can use the subzonal forces, because our rezoning
strategy can in particular mitigate the hourglass mesh distortion, thus reducing the magnitude
of the subzonal forces.

Remapping in our ALE calculations is done using the cell-centered algorithm of
Dukowicz and Kodis [16], with modifications necessitated by our staggered grid (i.e.,
momentum is not a cell-centered quantity) and by the subzonal forces (i.e., one must remap
subzonal masses). Our preliminary strategy, to enable the ALE calculations presented later
in this section, is to define all quantities (including momentum) in the subzonal centers and
then to apply the Dukowicz–Kodis algorithm directly to the subzones. The final step is to use
the conservation laws to group the subzones appropriately, either around the vertices or the
cell centers, to restore velocity to the nodes and internal energy and density to the cell centers.

6.2. Rezoning Strategy Based on Winslow Smoothing Method

In this section we describe one possible rezone strategy based on direct use of the global
Winslow smoothing method and point out potential problems related to this approach. We
show results employing this strategy in ALE calculations in the next section.

First we introduce a standard discretization of the Winslow equations (4.1), (4.2) (see,
for example, [39]). The first and second derivatives of x with respect to ξ and η, which
appear in the Winslow equations, are approximated using central differences

(xξ )i, j ≈ xi+1, j − xi−1, j

2�ξ
, (xη)i, j ≈ xi, j+1 − xi, j+1

2�η
,

(xξξ )i, j ≈ xi+1, j − 2xi, j + xi−1, j

�ξ 2
, (xηη)i, j ≈ xi, j+1 − 2xi, j + xi, j−1

�η2
, (6.1)

(xξη)i, j ≈ xi+1, j+1 − xi−1, j+1 − xi+1, j−1 + xi−1, j−1

4�ξ�η

and similar formulas for the derivatives of y.
Now let us assume that we are given a grid with coordinates (xk

i, j , yk
i, j ) (where k refers

to the iteration number). We denote the coefficients g22, g12, g11 computed from these
coordinates and the approximate formulas (6.1) by αk , βk , and γ k , correspondingly. Then
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one iteration of Winslow smoothing (see [39]) is

xk+1
i, j = 1

2(αk + γ k)
· (

αk
(
xk

i, j+1 + xk
i, j−1

) + γ k
(
xk

i+1, j + xk
i−1, j

)
− 1

2
βk

(
xk

i+1, j+1 − xk
i−1, j+1 + xk

i−1, j−1 − xk
i+1, j−1

) )
(6.2)

yk+1
i, j = 1

2(αk + γ k)
· (

αk
(

yk
i, j+1 + yk

i, j−1

) + γ k
(

yk
i+1, j + yk

i−1, j

)
− 1

2
βk

(
yk

i+1, j+1 − yk
i−1, j+1 + yk

i−1, j−1 − yk
i+1, j−1

) )
.

The authors of [39] suggest using a few iterates based on the formulas (6.2), starting with
the Lagrangian grid as an initial guess rather than iterating to convergence. They further
suggest restricting the rezone to some set of “marked” nodes; to choose the “marked”
nodes, they use an ad hoc criterion based on the comparison of angles and areas of the cells
surrounding these nodes.

As a simple example, we consider the “chevron” grid shown in Fig. 15 in bold lines,
consisting of only four cells. Here, we allow only the central node of the grid and the central
nodes of the left and right boundaries to move, thus preserving the integrity of the shape
of the domain. For the nodes on the boundary, the 1D analog of the Winslow smoothing
step is to choose the new node position halfway between the neighboring nodes. After two
iterations of (6.2) we get the folded grid shown in Fig. 15a in dotted lines. It is important to
understand that this is not a contrived example, but may represent a small patch taken from
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FIG. 15. Comparison of Winslow and RJM rezone strategies for “chevron” grid. (a) Winslow. (b) RJM.
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a much larger grid where the nodes on the boundary of the patch have not been “marked.”
In contrast, our RJM rezone strategy produces the grid shown in Fig. 15b. Clearly, the
RJM rezone has preserved the essence of the original Lagrangian grid while improving the
overall grid quality.

The failure of the Winslow strategy in the above example depends mainly on the use of
“marked” grids. To reduce the likelihood of an invalid grid, in the next section we apply the
rezone to all nodes using formulas (6.2). We further restrict ourselves to using two iterations.
We call this approach our Winslow strategy, without repeating the disclaimer that this
implementation is not unique. We also remind the reader that this particular implementation
may not exactly correspond to that used in any other ALE codes. However, it is a simple
implementation that captures the spirit of rezoning based on Winslow smoothing.

6.3. Preliminary ALE Results for Rayleigh–Taylor Instability

The Rayleigh–Taylor instability problem that we simulate here consists of two ideal gases
with densities ρh = 2 and ρl = 1; in both cases the adiabatic constant γ = 1.4. Initially, the
heavier gas is above the lighter gas in a rectangular vessel ([0 : 1/6] × [0 : 1]), with a grav-
itational field directed vertically downward and with magnitude g = 0.1. The interface has
been deliberately perturbed as described by the formula yi (x) = 1

2 + A cos (6πx), A = 0.01.
Initially, both gases are at rest (velocity is 0 everywhere); the pressure distribution is ap-
proximately hydrostatic and is defined in the lighter gas as

P = 1 + 0.5ρh g + ρl g(0.5 − y),

and in the heavier gas as

P = 1 + ρh g(1 − y).

It is well known that this configuration is unstable, and as time progresses, the heavier gas
will sink and the lighter gas will rise through the formation of bubbles and spikes. Further
details of the general theory of Rayleigh–Taylor instabilities can be found in [31].

The time evolution of this problem leads to a rollup of the interface and the generation
of significant vorticity. Thus this problem is poorly suited for Lagrangian methods and is
usually tackled using Eulerian techniques. Our goal here is not to suggest that ALE codes
can supplant Eulerian codes, especially for the late stages of the evolution. Rather our
goal is to demonstrate how the ALE methodology with RJM rezone strategy can improve
robustness, accuracy, and computational efficiency over purely Lagrangian methods and
also over an alternate ALE method that uses the simple Winslow rezone strategy described
in the previous section. To this end, we present and compare four simulations here: a
purely Lagrangian simulation, an ALE simulation using the Winslow rezone strategy, an
ALE simulation using the RJM rezone strategy described in this paper, and an Eulerian
simulation with front tracking. The latter, using FronTier [20, 21], is much more highly
resolved and is offered as a reference solution to allow the comparison of Lagrangian and
ALE simulations.

The grid dimensions for both the Lagrangian and ALE calculations are 65 × 65. The
initial grid consists of lines parallel to the y axis (i = const); on each such vertical line, half
the points are equispaced between the interface and the top boundary and the other half are
equispaced between the interface and the bottom boundary. The width of the simulation
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domain is 1/6 its height, so that the zones have an initial aspect ratio of 1 : 6. The reason
for this choice is that at the times for which we present results (t = 7.0 and t = 8.5), the
zones near the interface attain an aspect ratio of approximately 1 : 1, which improves the
accuracy and robustness of the simulation at the late stages. Indeed, for a simulation with
relatively large distortion such as the Rayleigh–Taylor problem, and when the connectivity
of the grid is fixed in time, the choice of the initial grid can make a noticeable difference in
the quality of the final results. However, our experiments with various initial grids show that
the results of the Lagrangian calculations cannot be improved significantly. For example,
using an initial grid with mass matching across the interface does not improve the final
shape of the interface.

The strength of the subzonal pressure forces is controlled by a parameter called a “merit
factor” [9], and a standard value of this parameter is unity. However, when we run the
Rayleigh–Taylor problem with this merit factor, we get a smooth interface that is far from
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FIG. 16. Comparison of fragments of the grids at t = 7.0 for Lagrangian calculations, ALE calculations
with the Winslow rezone strategy, and ALE calculations with the new RJM rezone strategy. (a) Lagrangian.
(b) Winslow. (c) RJM.
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correct. This is a clear indication that the subzonal pressures can change the physics of
the problem. On the other hand, we have found that choosing too small a merit factor will
not adequately control the unphysical motions. In our experiments on the Rayleigh–Taylor
problem, we have found that choosing the merit factor equal to 0.1 is sufficient to keep the
purely Lagrangian grid from tangling.

In our ALE calculations, we use the same initial grid as above and rezone every 20th step.
We continue to use the subzonal pressures with the same merit factor; however, because the
rezoning maintains a much smoother grid, the subzonal forces are much smaller, and as we
will see from numerical results, they do not affect the physics perceptibly.

In Fig. 16 we present fragments of the grids at t = 7.0 for the purely Lagrangian calcu-
lations, the ALE calculations using the Winslow rezone strategy, and the ALE calculations
using our new RJM rezone strategy. The corresponding comparison of these solutions with
the FronTier (320 × 60 grid) results is presented in Fig. 17. Clearly, the purely Lagrangian
calculation produces a very distorted grid, which reduces the accuracy of the solution, as can
be seen from Fig. 17a. The ALE calculation using the Winslow rezone strategy produces
an overly smoothed grid, leading to the result in Fig. 17b. The width of the mixed layer
is wrong, as is its shape. Moreover, the volumes of the light and heavy fluids are wrong.
The ALE calculations with our new RJM rezone strategy produces a grid that more closely
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with simpler schemes performing better on simpler problems. A rezoning strategy highly
optimized by the user for a particular problem may run very efficiently but require consider-
ably more time and effort to set up. Finally, we note that in applications with many coupled
physical processes, hydrodynamic algorithms usually represent a small part of the overall
effort, and even factors of ten in efficiency may be insignificant.

The simplicity of a purely Lagrangian simulation should be preferred whenever appli-
cable. This is clearly not the case in the Rayleigh–Taylor problem of Section 6, where the
Lagrangian simulation is both inaccurate and subject to severe mesh distortion. At the other
end of the spectrum, the RJM/ALE algorithm that we have described is both accurate and
robust, while allowing flexibility for choosing alternate rezone strategies. To paraphrase
Albert Einstein, an effective hydrodynamic algorithm should be as simple as possible, but
not simpler.
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